

# Journal of Animal Diversity

Online ISSN 2676-685X

Volume 4, Issue 4 (2022)

**Research Article** 

http://dx.doi.org/10.52547/JAD.2022.4.4.1 http://zoobank.org/02183962-CB8D-4D17-8FEE-C2ADA772475F

# Taxonomic reassessment of *Odorrana graminea* (Boulenger, 1900) sensu lato in China (Anura, Ranidae)

Shuo Liu<sup>1,2</sup>\*<sup>(0)</sup>, Mian Hou<sup>3 (0)</sup> and Hong Hui<sup>2 (0)</sup>

<sup>1</sup>Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China

<sup>2</sup>Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China

<sup>3</sup>College of Continuing (Online) Education, Sichuan Normal University, Chengdu, Sichuan 610066, China \*Corresponding author<sup>[]</sup>. liushuo@mail.kiz.ac.cn

Citation: Liu, S., Hou, M. and Hui, H. (2022). Taxonomic reassessment of *Odorrana graminea* (Boulenger, 1900) sensu lato in China (Anura, Ranidae). *Journal of Animal Diversity*, 4 (4): 1–11. http://dx.doi.org/10.52547/JAD.2022.4.4.1

#### Abstract

Received: 12 September 2022 Accepted: 28 November 2022 Published online: 31 December 2022 We sequenced mitochondrial 16S rRNA gene fragments of 84 samples of *Odorrana graminea* (Boulenger, 1900) sensu lato from 33 sites in southern China. Combining the newly generated sequences and congeneric sequences obtained from GenBank, we reconstructed a molecular phylogeny for the genus *Odorrana* Fei, Ye and Huang, 1990. Phylogenetic analysis revealed five highly divergent lineages which were paraphyletic within *O. graminea* sensu lato in southern China. The lineage from Medog and western Yunnan is assigned to *O. chloronota* (Günther, 1876). The lineage from Hainan, southeastern Guangxi, and southwestern Guangdong corresponds to *O. graminea* sensu stricto; the lineage from Fujian, Jiangxi, easternmost Guangxi, and northern, central, and eastern Guangdong corresponds to *O. leporipes* (Werner, 1930); and the remaining two lineages from southern Yunnan represent two cryptic new species. In addition, by checking the type specimens of *O. rotodora* (Yang and Rao, 2008) we confirmed that *O. rotodora* is the synonym of *O. chloronota*.

Key words: 16S rRNA, morphology, phylogeny, systematics, taxonomy

## Introduction

The large green odorous frog, *Odorrana graminea* sensu lato, include seven nominal species in China, namely *O. nebulosa* (Hallowell, 1861), *O. graminea* (Boulenger, 1900), *O. chloronota* (Günther, 1876), *O. sinica* (Ahl, 1927), *O. leporipes* (Werner, 1930), *O. zhaoi* Li, Lu and Rao, 2008, and *O. rotodora* (Yang and Rao, 2008).

*Odorrana graminea*, the type locality of which is in Wuzhishan Mountain, Hainan Province, China, was considered to be widely distributed in southern China (AmphibiaChina, 2022; Frost, 2022). *Odorrana leporipes* was once considered synonymous with *O. livida* (Blyth, 1856) and was resurrected by Bain et al. (2003), and its type locality is in Longtoushan Mountain, northern Guangdong Province, China.

Odorrana zhaoi was described from Medog, Tibet, China, and was treated as a synonym of O. chloronota, the type locality of which is in Darjeeling, West Bengal, India, by Che et al. (2020). Odorrana sinica was also once considered synonymous with O. livida and was resurrected by Bain et al. (2003); however, this species is not included by AmphibiaChina (2022), although its type locality is in China. Odorrana nebulosa (originally Rana nebulosa) was described from Hong Kong; it was considered a nomen dubium by Boulenger (1882), and it was considered invalid by Bain et al. (2003). Odorrana rotodora was previously considered to be widely distributed in western and southwestern Yunnan Province, China (Yang and Rao, 2008; Fei et al., 2012; Fei, 2020; AmphibiaChina, 2022; Frost, 2022). The voucher number of the holotype of O. rotodora was given as "03199", and its collection site was given as "云南瑞丽" (Ruili City, western Yunnan, China) on page 79 in Yang and Rao (2008), but in table 14 of the morphological measurements of *O. rotodora* on page 81 in Yang and Rao (2008), the collection site of the holotype (03199) was given as "盈江" (Yingjiang County, western Yunnan, China). This is confusing and makes it impossible to know which site is the true type locality of *O. rotodora*.

During our field surveys in southern China from 2016 to 2021, we collected a series of specimens of Odorrana Fei, Ye and Huang, 1990 identified previously as O. rotodora from western Yunnan Province, and identified previously as O. graminea from Guangxi Autonomous Region and Hainan, Guangdong, Jiangxi, Fujian, and southern Yunnan provinces. After molecular analysis, we found that the specimens from western Yunnan were related to O. chloronota; the specimens from Hainan, southeastern Guangxi, and southwestern Guangdong were related to O. graminea; the specimens from Fujian, Jiangxi, northern, central, and eastern Guangdong, and easternmost Guangxi were related to O. leporipes; and the specimens from southern Yunnan as well as western and northern Guangxi represent two cryptic new species.

In addition, to determine the true type locality of Odorrana rotodora and verify the validity of O. rotodora, we checked the type specimens of O. rotodora deposited in Kunming Natural History Museum of Zoology, Kunning Institute of Zoology, Chinese Academy of Sciences. We found that the toponym "盈江红崩江" was written on the original label attached to the holotype (03199) of O. rotodora. This toponym refers to Hongbenghe, an abandoned trade port between China and Myanmar in Xueli Village, Taiping Town, Yingjiang County, Yunnan Province, China. Therefore, Hongbenghe is the true type locality of O. rotodora. In our phylogenetic analysis, the sequences of the specimens from western Yunnan (including Hongbenghe) all clustered with the sequences of O. chloronota. Furthermore, we found that the morphological characters of the holotype of O. rotodora agree well with the original description of O. chloronota. Therefore, we consider that O. rotodora and O. chloronota are conspecific.

# **Material and Methods**

Field surveys in Hainan Province were conducted in 2016 and 2017; field surveys in Fujian and Jiangxi provinces were conducted in 2017 and 2018; field surveys in Guangxi Autonomous Region and Guangdong Province were conducted in 2017 and 2019; and field surveys in Yunnan Province were conducted from 2018 to 2021. Specimens were euthanized and fixed in 75% ethanol for storage. Liver tissue samples were preserved in 99% ethanol for molecular analysis. All specimens were deposited in Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences (KIZ).

Total genomic DNA was extracted from liver tissues using the DNeasy Tissue Kit (Qiagen, Inc., Valencia, CA). A fragment of the mitochondrial 16S rRNA gene was amplified and sequenced using the primers L2188: 5'-AAAGTGGGCCTAAAAGCAGCCA-3' 5'-(Matsui et al., 2006) and 16H1: CTCCGGTCTGAACTCAGATCACGTAGG-3' (Hedges, 1994). The polymerase chain reaction (PCR) cycling conditions and the experimental protocols used in this study were the same as those in Liu et al. (2022). We generated eight sequences of specimens from two localities of Hainan, 12 sequences of specimens from five localities of Guangdong, five sequences of specimens from two localities of Jiangxi, four sequences of specimens from one localities of Fujian, 14 sequences of specimens from nine localities of Guangxi, and 41 sequences of specimens from 14 localities of Yunnan (Fig. 1). All new sequences have been deposited in GenBank. In addition, we downloaded one sequence (DQ650594) of the syntype (BMNH 1947.2.28.6) of Odorrana chloronota, one sequence (MW019903) of O. chloronota (formerly O. zhaoi) from the type locality Medog of O. zhaoi, one sequence (KF185038) of O. graminea from its type locality Wuzhishan, and one sequence (KF185036) of O. leporipes from northern Guangdong. Sequences of other congeners and outgroups were also downloaded from Genbank (Table 1). Combining the newly generated sequences and the sequences from Genbank, we reconstructed a molecular phylogeny of the genus Odorrana. The technical computation methods for the sequence alignment, best substitution model selection, and Bavesian inference Maximum likelihood phylogenetic analyses, and genetic divergences calculation were the same as those in Liu et al. (2022).

# Results

The Maximum likelihood and Bayesian inference phylogenetic trees were essentially consistent. The sequences of the specimens from western Yunnan (including the type locality of *Odorrana rotodora*) clustered with the sequence (DQ650594) of the syntype (BMNH 1947.2.28.6) of O. chloronota and the sequence (MW019903) of O. chloronota (formerly O. zhaoi) from Medog. The sequences of the specimens from Hainan, southeastern Guangxi, and southwestern Guangdong clustered with the sequence (KF185038) of O. graminea from its type locality; the sequences of the specimens from Fujian, Jiangxi, easternmost Guangxi, and northern, central, and eastern Guangdong clustered with the sequence (KF185036) of O. leporipes from northern Guangdong. However, the sequences of the specimens from southwestern Yunnan and the sequences of the specimens from southeastern Yunnan as well as western and northern Guangxi formed two distinct strongly supported lineages, sister to each other and together sister to a clade comprising O. graminea and O. leporipes (Fig. 2).

|                          |                                 | X7 I NI.                       | C. D. I.N.  |
|--------------------------|---------------------------------|--------------------------------|-------------|
| Species                  | Locality                        | Voucher No.                    | GenBank No. |
| Odorrana absita          | Xe Sap, Xe Kong, Laos*          | FMNH258109                     | EU861542    |
| Odorrana amamiensis      | Tokunoshima, Ryukyu, Japan      | KUHE24635                      | AB200947    |
| Odorrana anlungensis     | Anlong, Guizhou, China*         | HNNU1008I109                   | KF185049    |
| Odorrana aureola         | Phu Luang, Loei, Thailand*      | ZMKU AM 01137                  | KT002162    |
| Odorrana bacboensis      | Khe Moi, Nghe An, Vietnam*      | FMNH255611                     | DQ650569    |
| Odorrana banaorum        | Tram Lap, Gia Lai, Vietnam      | ROM7472                        | AF206487    |
| Odorrana chapaensis      | Lai Chau, Vietnam               | AMNH A161439                   | DQ283372    |
| Odorrana chloronota      | Darjeeling, West Bengal, India* | BMNH 1947.2.28.6               | DQ650594    |
| Odorrana chloronota      | Medog, Tibet, China             | KIZ06655                       | MW019903    |
| Odorrana chloronota      | Hongbenghe, Yunnan, China       | KIZ 044945                     | OP896865    |
| Odorrana chloronota      | Hongbengne, Yunnan, China       | KIZ 044946                     | OP896866    |
| Odorrana chloronota      | Hongbengne, Yunnan, China       | KIZ 044947                     | OP896867    |
| Odorrana chloronota      | Tongbiguan, Yunnan, China       | KIZ 044943                     | OP896868    |
| Odorrana chioronola      | Tongoiguan, Yunnan, China       | KIZ 044944<br>KIZ 020051       | OP890809    |
| Odorrana chloronola      | Nohang Yunnan, China            | KIZ 039931                     | OP890870    |
| Odorrana chloronota      | Nabang, Yunnan, China           | KIZ 040399                     | OP806872    |
| Odorrana chloronota      | Nabang Yunnan China             | KIZ 040400                     | OP806873    |
| Odomana dulongensis      | Dulongijong Vunnon Chino*       | KIZ 040401<br>VIZ025027        | MW128102    |
| Odorrana aviliyarsabilis | Wuwishan Fujian China*          | HNNU0607032                    | VF185056    |
| Odorrana fangkajansis    | Shiwanshan Guangyi China        | HNINI 1205 71/2                | KF185033    |
| Odorrana gaminata        | Cao Bo, Ha Giang, Vietnam*      | AMNH 163782                    | EU861546    |
| Odorrana grahami         | Kunming Vunnen Chine*           | HNNI 1100811016                | KE185051    |
| Odorrana graminea        | Wuzhishan Hainan China*         | HNNU10606123                   | KF185038    |
| Odorrana graminea        | Vinggeling Hainan, China        | KIZ20160001                    | OP896874    |
| Odorrana graminea        | Vinggeling Hainan, China        | KIZ20160001                    | OP896875    |
| Odorrana graminea        | Vinggeling Hainan, China        | KIZ20100002                    | OP896876    |
| Odorrana graminea        | Vinggeling Hainan, China        | KIZ20160003                    | OP896877    |
| Odorrana graminea        | Bawangling Hainan China         | KIZ20100004                    | OP896878    |
| Odorrana graminea        | Bawangling Hainan China         | KIZ2017062502                  | OP896879    |
| Odorrana graminea        | Bawangling Hainan China         | KIZ2017062503                  | OP896880    |
| Odorrana graminea        | Bawangling, Hainan, China       | KIZ2017062504                  | OP896881    |
| Odorrana graminea        | Gaozhou, Guangdong, China       | KIZ2019091301                  | OP896882    |
| Odorrana graminea        | Gaozhou, Guangdong, China       | KIZ2019091302                  | OP896883    |
| Odorrana graminea        | Gaozhou, Guangdong, China       | KIZ2019091303                  | OP896884    |
| Odorrana graminea        | Shanglin, Guangxi, China        | KIZ2019090101                  | OP896885    |
| Odorrana graminea        | Shanglin, Guangxi, China        | KIZ2019090102                  | OP896886    |
| Odorrana graminea        | Shanglin, Guangxi, China        | KIZ2019090103                  | OP896887    |
| Odorrana graminea        | Yulin, Guangxi, China           | KIZ2019091500                  | OP896888    |
| Odorrana hainanensis     | Wuzhishan, Hainan, China*       | HNNU0606105                    | KF185032    |
| Odorrana hejiangensis    | Hejiang, Sichuan, China*        | HNNU1007I202                   | KF185052    |
| Odorrana hosii           | Kuala Lumpur, Malaysia          | No voucher                     | AB511284    |
| Odorrana huanggangensis  | Wuyishan, Fujian, China*        | HNNU0607001                    | KF185059    |
| Odorrana ishikawae       | Amami Island, Ryukyu, Japan     | No voucher                     | AB511282    |
| Odorrana jingdongensis   | Jingdong, Yunan, China*         | 20070711017                    | KF185050    |
| Odorrana junlianensis    | Junlian, Sichuan, China*        | HNNU002                        | KF185058    |
| Odorrana kuangwuensis    | Nanjiang, Sichuan, China*       | HNNU0908II185                  | KF185034    |
| Odorrana kweichowensis   | Lengshuihe, Guizhou, China*     | CIBjs20150803008               | MH193552    |
| Odorrana leporipes       | Shaoguan, Guangdong, China      | HNNU1008I099                   | KF185036    |
| Odorrana leporipes       | Shixing, Guangdong, China       | KIZ2019090901                  | OP896889    |
| Odorrana leporipes       | Shixing, Guangdong, China       | KIZ2019090902                  | OP896890    |
| Odorrana leporipes       | Shixing, Guangdong, China       | KIZ2019090903                  | OP896891    |
| Odorrana leporipes       | Yangshan, Guangdong, China      | KIZ2019090801                  | OP896892    |
| Odorrana leporipes       | Yangshan, Guangdong, China      | KIZ2019090802                  | OP896893    |
| Odorrana leporipes       | Yangshan, Guangdong, China      | KIZ2019090803                  | OP896894    |
| Odorrana leporipes       | Huizhou, Guangdong, China       | KIZ2019091101                  | OP896895    |
| Odorrana leporipes       | Huizhou, Guangdong, China       | KIZ2019091102                  | OP890890    |
| Odorrana leporipes       | Meiznou, Guangdong, China       | KIZ2019091001                  | OP89689/    |
| Odorrana leporipes       | Heznou, Guangxi, China          | KIZ2019090701                  | OP890898    |
| Odorrana leporipes       | Jinggangshan, Jiangxi, China    | KIZ2018053001                  | OP890899    |
| Odorrana leporipes       | Jinggangshan, Jiangxi, China    | KIZ2018055002                  | OP890900    |
| Odorrana lanorinas       | Lichuan Jiangyi China           | KIZ2018000201                  | OP806002    |
| Odorrana lanorinas       | Lichuan, Jiangxi, China         | KIZ2018051701                  | OP806003    |
| Odorrana lenorines       | Wuvishan Fujian China           | KIZ2018050601                  | OP896904    |
| Odorrana leporines       | Wuvishan Fujian China           | KIZ2018050602                  | OP896005    |
| Odorrana leporines       | Wuvishan Fujian China           | KIZ2018050002                  | OP896006    |
| Odorrana lenorines       | Wuvishan Fujian China           | KIZ2018050901<br>KIZ2018050902 | OP896907    |
| Odorrana liboensis       | Maolan Guizhou China*           | GZNU20160802003                | MW481352    |
| Odorrana linuensis       | Lipu, Guilin, Guanoxi China*    | NHMG1306002                    | KM388699    |
| Odorrana livida          | Thagata Juwa, Myanmar*          | BMNH 1889.3.25.48              | DQ650615    |

**Table 1:** Samples used for phylogenetic analyses of molecular sequence data. \* = type locality.

# Table 1: (Continued).

| Species                   | Locality                      | Voucher No.                    | GenBank No. |
|---------------------------|-------------------------------|--------------------------------|-------------|
| Odorrana lungshengensis   | Longsheng, Guangxi, China*    | HNNU70028                      | KF185054    |
| Odorrana macrotympana     | Yingjiang, Yunnan, China*     | KIZ 2009051020                 | OL831010    |
| Odorrana margaretae       | Emei, Sichuan, China          | HNNU20050032                   | KF185035    |
| Odorrana morafkai         | Tram Lap, Gia Lai, Vietnam*   | ROM7446                        | AF206484    |
| Odorrana mutschmanni      | Cao Bang, Vietnam*            | IEBR 3725                      | KU356766    |
| Odorrana nanjiangensis    | Nanjiang, Sichuan, China*     | HNNU1007I291                   | KF185042    |
| Odorrana narina           | Okinawa Island, Ryukyu, Japan | No voucher                     | AB511287    |
| Odorrana nasica           | Ha Tinh, Vietnam              | AMNH A161169                   | DQ283345    |
| Odorrana nasuta           | Wuzhishan, Hainan, China*     | HNNU051119                     | KF185053    |
| Odorrana sangzhiensis     | Sangzhi, Hunan, China*        | CSUFT 4305220051               | MW464865    |
| Odorrana schmackeri       | Yichang, Hubei, China*        | HNNU0908II349                  | KF185047    |
| Odorrana supranarina      | Iriomotejima, Ryukyu, Japan   | KUHE2898                       | AB200950    |
| Odorrana swinhoana        | Nantou, Taiwan, China         | HNNUTW9                        | KF185046    |
| Odorrana tianmuii         | Tianmushan, Zhejiang, China*  | NHMG1303018                    | KT315390    |
| Odorrana tiannanensis     | Hekou, Yunnan, China*         | KIZ20215191                    | OL831006    |
| Odorrana tormota          | Huangshan, Anhui, China*      | No voucher                     | DQ835616    |
| Odorrana trankieni        | Vietnam                       | VNMN04035                      | KX893900    |
| Odorrana utsunomiyaorum   | Iriomotejima, Ryukyu, Japan   | KUHE12896                      | AB200952    |
| Odorrana versabilis       | Leishan, Guizhou, China*      | HNNU003 LS                     | KF185055    |
| Odorrana wuchuanensis     | Wuchuan, Guizhou, China*      | HNNU019 L                      | KF185043    |
| Odorrana yentuensis       | Vietnam                       | IEBRA.2015.38                  | KX893891    |
| Odorrana yızhangensis     | Yizhang, Hunan, China*        | HNNU10081075                   | KF185048    |
| Odorrana yunnanensis      | Longchuan, Yunnan, China*     | HNNU001YN                      | KF18505/    |
| Odorrana sp. 1            | Yangwan, Yunnan, China        | KIZ2021051201                  | OP896908    |
| Odorrana sp. 1            | Yangwan, Yunnan, China        | KIZ2021051202                  | OP896909    |
| Odorrana sp. 1            | Yangwan, Yunnan, China        | KIZ2021051207                  | OP896910    |
| Odorrana sp. 1            | Yangwan, Yunnan, China        | KIZ2021051208                  | OP890911    |
| Odorrana sp. 1            | Malipo, Yunnan, China         | KIZ2019082804                  | OP890912    |
| Odorrana sp. 1            | Malina Vunnan, China          | KIZ2019082803                  | OP890915    |
| Odorrana sp. 1            | Malina Vunnan, China          | KIZ2019082811                  | OP890914    |
| Odomana sp. 1             | Tionhao Yunnon China          | KIZ2019082812<br>VIZ2021051201 | OP806016    |
| Odorrana sp. 1            | Tianbao, Tunnan, China        | KIZ2021051301                  | OP896917    |
| Odorrana sp. 1            | Hekou Vunnan China            | KIZ2021051502                  | OP896918    |
| Odorrana sp. 1            | Hekou Vunnan China            | KIZ2021051501                  | OP896919    |
| Odorrana sp. 1            | Geiju Yunnan China            | KIZ2020413                     | OP896920    |
| Odorrana sp. 1            | Jianshui, Yunnan, China       | KIZ2020072501                  | OP896921    |
| Odorrana sp. 1            | Jingxi, Guangxi, China        | KIZ2019083001                  | OP896922    |
| Odorrana sp. 1            | Jingxi, Guangxi, China        | KIZ2019083002                  | OP896923    |
| Odorrana sp. 1            | Shangsi, Guangxi, China       | KIZ2017060901                  | OP896924    |
| Odorrana sp. 1            | Shangsi, Guangxi, China       | KIZ2017060902                  | OP896925    |
| Odorrana sp. 1            | Tianlin, Guangxi, China       | KIZ2019091601                  | OP896926    |
| Odorrana sp. 1            | Hechi, Guangxi, China         | KIZ2019090201                  | OP896927    |
| Odorrana sp. 1            | Guilin, Guangxi, China        | KIZ2019090301                  | OP896928    |
| Odorrana sp. 1            | Jinxiu, Guangxi, China        | KIZ2019090602                  | OP896929    |
| Odorrana sp. 1            | Jinxiu, Guangxi, China        | KIZ2019090603                  | OP896930    |
| Odorrana sp. 2            | Guanlei, Yunnan, China        | KIZ20194271                    | OP896931    |
| Odorrana sp. 2            | Guanlei, Yunnan, China        | KIZ20194272                    | OP896932    |
| Odorrana sp. 2            | Guanlei, Yunnan, China        | KIZ20194273                    | OP896933    |
| Odorrana sp. 2            | Mengla, Yunnan, China         | KIZ20194251                    | OP896934    |
| Odorrana sp. 2            | Mengla, Yunnan, China         | KIZ20194252                    | OP896935    |
| Odorrana sp. 2            | Mengla, Yunnan, China         | KIZ20194253                    | OP896936    |
| Odorrana sp. 2            | Mengla, Yunnan, China         | KIZ2019511                     | OP896937    |
| Odorrana sp. 2            | Mengla, Yunnan, China         | KIZ2019512                     | OP896938    |
| Odorrana sp. 2            | Mengla, Yunnan, China         | KIZ2019514                     | OP896939    |
| Odorrana sp. 2            | Shangyong, Yunnan, China      | KIZ2019050601                  | OP896940    |
| Odorrana sp. 2            | Shangyong, Yunnan, China      | KIZ2019050602                  | OP896941    |
| Odorrana sp. 2            | Shangyong, Yunnan, China      | KIZ2019050701                  | OP896942    |
| Odorrana sp. 2            | Shangyong, Yunnan, China      | KIZ2019050702                  | OP896943    |
| Odorrana sp. 2            | Ning'er, Yunnan, China        | KIZ20197151                    | OP896944    |
| Odorrana sp. 2            | Ning'er, Yunnan, China        | KIZ20197153                    | OP896945    |
| Odorrana sp. 2            | Ning'er, Yunnan, China        | KIZ20197154                    | OP896946    |
| Oaorrana sp. 2            | Mengma, Yunnan, China         | KIZ2020090401                  | OP896947    |
| Daorrana sp. 2            | Mengma, Yunnan, China         | NIZ2020090402                  | UP890948    |
| Pelophylax nigromaculatus | Locality unknown              | INO VOUCHER                    | LC389208    |
| Kana chensinensis         | ivingsnan, Shanxi, China      | TININU20000339                 | KT103001    |



Figure 1: Collection sites of the specimens of *Odorrana graminea* sensu lato in southern China: 1. Wuyishan, Fujian; 2. Lichuan, Jiangxi; 3. Jinggangshan, Jiangxi; 4. Shixing, Guangdong; 5. Meizhou, Guangdong; 6. Huizhou, Guangdong; 7. Yangshan, Guangdong; 8. Hezhou, Guangxi; 9. Gaozhou, Guangdong; 10. Yulin, Guangxi; 11. Shanglin, Guangxi; 12. Yinggeling, Hainan; 13. Bawangling, Hainan; 14. Jinxiu, Guangxi; 15. Guilin, Guangxi; 16. Hechi, Guangxi; 17. Tianlin, Guangxi; 18. Shangsi, Guangxi; 19. Jingxi, Guangxi; 20. Yangwan, Yunnan; 21. Malipo, Yunnan; 22. Tianbao, Yunnan; 23. Hekou, Yunnan; 24. Gejiu, Yunnan; 25. Jianshui, Yunnan; 26. Guanlei, Yunnan; 27. Mengla, Yunnan; 28. Shangyong, Yunnan; 29. Ning'er, Yunnan; 30. Mengma, Yunnan; 31. Hongbenghe, Yunnan; 32. Tongbiguan, Yunnan; 33. Nabang, Yunnan.

The genetic divergence (uncorrected p-distance) between the sequences of the specimens from western Yunnan (including the type locality of *Odorrana rotodora*) and the sequence (DQ650594) of the syntype (BMNH 1947.2.28.6) of *O. chloronota* was 1.1%; the genetic divergence (uncorrected p-distance) between the sequence (MW019903) of *O. chloronota* (former *O. zhaoi*) from Medog and the sequence (DQ650594) of the syntype (BMNH 1947.2.28.6) of *O. chloronota* was 1.4%; and the genetic divergence (uncorrected pdistance) between the sequences of the specimens from western Yunnan (including the type locality of *O. rotodora*) and the sequence (MW019903) of *O. chloronota* (formerly *O. zhaoi*) from Medog was 0.5%. The genetic divergences (uncorrected p-distance) between the sequences of the specimens from southeastern Yunnan as well as western and northern Guangxi and investigated sequences of named congeners ranged from 4.4% to 15.0%; the genetic divergences (uncorrected p-distance) between the sequences of the specimens from southwestern Yunnan and investigated sequences of named congeners ranged from 4.4% to 14.8%; and the genetic divergences (uncorrected p-distance) between the sequences of the specimens from southwestern Yunnan as well as western and northern Guangxi and the sequences of the specimens from southeastern Yunnan as well as western and northern Guangxi and the sequences of the specimens from southwestern Yunnan was 4.3% (Table S1).



**Figure 2:** Bayesian inference tree of the genus *Odorrana* based on the mitochondrial 16S rRNA sequences. Numbers before slashes indicate Bayesian posterior probabilities ( $\geq 0.90$ ) and numbers after slashes indicate bootstrap supports from Maximum likelihood analysis ( $\geq 90$ ).

The morphological characters of the holotype of *Odorrana rotodora* agree well with the original (Günther, 1876) and subsequent (Bain et al., 2003) descriptions of *O. chloronota*: finger I longer than finger II and equal in length to finger IV, dorsal skin smooth, flanks weakly granular, venter smooth, supratympanic fold weak, dorsolateral folds absent, some black spots on dorsum and transverse bars on forelimbs and hindlimbs, loins and hind part of thighs marbled with whitish, with velvety nuptial pad on thumb and paired external vocal sacs.

There are no insignificant differences in morphological character among the specimens from Hainan, Guangxi, Guangdong, Fujian, Jiangxi, and southern Yunnan. There are only some unobvious differences of colorations in life among them. Dorsum green, seldom with black dots; loreal region, flanks, or dorsal limbs sometimes with green colorations in the specimens from Hainan, southeastern Guangxi, and southwestern Guangdong. Dorsum green, usually with several small black dots; loreal region, flanks, or dorsal limbs seldom with green colorations in the specimens from Fujian, Jiangxi, easternmost Guangxi, and northern, central, and eastern Guangdong. Dorsum green, usually with several small or large black dots; loreal region, flanks, or dorsal limbs sometimes with green colorations; edge of upper eyelid usually green in the specimens from southeastern Yunnan as well as western and northern Guangxi. Dorsum green, olive, or brown, usually with several large black dots; edge of upper eyelid usually brownish yellow in the specimens from southwestern Yunnan.

Therefore, we consider that *Odorrana rotodora* and *O. chloronota* to be conspecific and we agree with Che et al. (2020), namely in that *O. zhaoi* and *O. rotodora* are both synonyms of *O. chloronota*. Due to the lack of morphological diagnosis for the specimens from southwestern Yunnan and from southeastern Yunnan as well as western and northern Guangxi, we hesitate to describe them herein as two new taxa.

#### Taxonomy

# Odorrana chloronota (Günther, 1876)

Figs. 3-4

Syntypes. BMNH (10 specimens), including BMNH 1947.2.28.6, 1947.2.28.10, and 1947.2.28.12 (Frost, 2022). Type locality. Darjeeling, West Bengal, India.

Synonyms. Odorrana zhaoi Li, Lu and Rao, 2008; O. rotodora (Yang and Rao, 2008).

**Distribution.** Within China: Medog, Tibet, and Yingjiang County, Dehong Prefecture, Yunnan Province. Outside China: India, Myanmar, Thailand, and Vietnam, possibly Bangladesh and Nepal (Frost, 2022).



Figure 3: Dorsal view (A) and ventral view (B) of the holotype of Odorrana rotodora in preservative.



Figure 4: *Odorrana chloronota* in life from Yingjiang County, Dehong Prefecture, Yunnan Province, China. A and B adult males; C and D adult females.

#### **Odorrana graminea** (Boulenger, 1900)

**Syntypes.** BMNH 1947.2.27.96 and 1947.2.27.97, two adult males (Bain et al., 2003).

**Type locality.** Wuzhishan Mountain (Five-finger Mountain), Hainan Province, China.

**Distribution.** Hainan Province, southwestern of Guangdong Province, and southeastern of Guangxi Autonomous Region, China.

#### Odorrana leporipes (Werner, 1930)

**Types.** The voucher specimens of the type series have been lost (Bain et al., 2003).

**Type locality.** Longtoushan Mountain (Longtou Mountain), northern Guangdong Province, China.

**Distribution.** Northern, central, and eastern Guangdong Province; easternmost Guangxi Autonomous Region; Jiangxi Province; and Fujian Province, China. It is speculated that it is also distributed in southeastern Hunan Province, Zhejiang Province, and southern Anhui Province, China.

#### Odorrana sp. 1

#### Fig. 5

**Distribution.** Currently known from southeastern Yunnan Province, western and northern Guangxi Autonomous Region, China. It is speculated that it is also distributed in Guizhou Province, northwestern Hunan Province, Hubei Province, Chongqing Municipality, Sichuan Province, southern Shaanxi Province, and southernmost Gansu Province, China, as well as northern Vietnam.

#### Odorrana sp. 2

#### Fig. 6

**Distribution.** Currently known from southwestern Yunnan Province, including Xishuangbanna Prefecture and Pu'er City, China. It is speculated that it is also distributed in northern Laos and eastern Myanmar.

#### Discussion

For quite some time the type locality of *Odorrana rotodora* was considered to be in Ruili City, Yunnan Province, China (AmphibiaChina, 2022; Frost, 2022), although the collection site of the holotype was recorded as both Ruili City and Yingjiang County in Yang and Rao (2008). After checking the original label attached to the holotype of *O. rotodora*, we confirmed that this holotype was collected in Yingjiang rather than Ruili. Therefore, we correct this mistake here. The true type locality of this species is Hongbenghe, Xueli Village, Taiping Town, Yingjiang County, Yunnan Province, China.

Although there are large genetic differentiations within *Odorrana graminea* sensu lato, there are no significant morphological diagnoses for the two cryptic new species. In the present paper we do not provide formal descriptions of them, pending more detailed morphological comparisons, which are required to confirm their taxonomic status.

Xiong et al. (2015) and Chen et al. (2020) investigated the phylogeographic patterns and genetic structure of *Odorrana graminea* sensu lato in southern China and adjacent areas and retrieved similar results. Chen et al. (2020) revealed five highly divergent lineages within *O. graminea* sensu lato in China; the result of this study is very similar to theirs. The lineage from Tibet considered as *O. zhaoi* by them actually refers to *O. chloronota*; the lineage mainly from Hainan considered as clade B by them refers to *O. graminea*; the lineage from southeastern China considered as clade C by them refers to *O. graminea leporipes*; the lineage from southwestern Yunnan considered as *O. rotodora* by them corresponds to *Odorrana* sp. 2; and the lineage from the region surrounding the Yunnan–Guizhou Plateau in the east of the Hengduan Mountain considered as clade A by them corresponds to *Odorrana* sp. 1. However, the range of the clade A in Chen et al. (2020) is larger than the confirmed range of *Odorrana* sp. 1 in this study; therefore, we speculate that the distribution of *Odorrana* sp. 1 is far more than just in southeastern Yunnan as well as western and northern Guangxi.



Figure 5: *Odorrana* sp. 1 in life from Malipo County, Wenshan Prefecture, Yunnan Province, China. A, B, and C adult males; D, E, and F adult females.



Figure 6: *Odorrana* sp. 2 in life from Mengla County, Xishuangbanna Prefecture, Yunnan Province, China. A, B, and C adult males; D, E, and F adult females.

Although *Odorrana sinica* resembles *O. graminea* and its type locality is also in China, according to Bain et al. (2003), *O. sinica* has a relatively smaller body size in adult females, lip-stripe absent, tympanum indistinct and covered by a layer of skin, finger II longer than finger I, and nostril about one-half the distance from eye to tip of snout; these characteristics are different from all known species of *Odorrana*. No one has collected any specimens of this species in China since it was described, and it cannot be determined if this species still exists in some unknown areas of China or if it has gone extinct.

## Acknowledgments

We thank Decai Ouyang, Lei Ouyang, Zhongqiang Yang, Dazhou Peng, Zhaoxian Yang, Mingjin Pu,

Kang Luo, Song Li, Quan Li, Guiwu He, Bo Wang, Fei Li, Chun Liu, Dangshou Yang, Fanjing Yang, and Xiaoge Huang for their help in the fieldwork. We also thank the editors and reviewers for their work on the manuscript. This work was supported by Science-Technology Basic Condition Platform from the Ministry of Science and Technology of the Republic of China People's (Grant No. 2005DKA21402), National Natural Science Foundation Project: The Studies on the classification and phylogeny of the genus Amolops of China (Grant No. NSFC-31772424), and the project of Ministry of Ecology and Environment of China: Investigation and assessment of amphibians and reptiles in southern Yunnan.

# **Conflict of interest**

The authors declare that there are no conflicting issues related to this research article.

# Supplementary file

Supplementary file associated with this article is available for download at https://jad.lu.ac.ir/article-1-248-en.html

# References

- Ahl, E. (1927 "1925"). Über vernachlässigte Merkmale bei Fröschen. Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin, 1925: 40–47.
- AmphibiaChina (2022). The database of Chinese amphibians, http://www.amphibiachina.org (Accessed on 18 March 2022).
- Bain, R. H., Lathrop, A., Murphy, R. W., Orlov, N. L. and Cuc, H. T. (2003). Cryptic species of a cascade frog from Southeast Asia: taxonomic revisions and descriptions of six new species. *American Museum Novitates*, 3417: 1–60. https://doi.org/10.1206/0003-0082(2003)417%3C 0001:CSOACF%3E2.0.CO;2
- Blyth, E. (1856). Report for October Meeting, 1855. Journal of the Asiatic Society of Bengal, 24: 711-723.
- Boulenger, G. A. (1882). Catalogue of the Batrachia Salientia s. Ecaudata in the Collection of the British Museum. Second Edition. Taylor and Francis, London, U.K. 495 pp.
- Boulenger, G. A. (1900 "1988"). On the reptiles, batrachians, and fishes collected by the late Mr. John Whitehead in the interior of Hainan. *Proceedings of the Zoological Society of* London, 1899: 956–962.
- Che, J., Jiang, K., Yan, F. and Zhang, Y. P. (2020). Amphibians and Reptiles in Tibet — Diversity and Evolution. Science Press, Beijing, China. 803 pp.
- Chen, Z., Li, H. Y., Zhai, X. F., Zhua, Y. J., He, Y. X., Wang, Q. Y., Li, Z., Jiang, J. P., Xiong, R. C. and Chen, X. H. (2020). Phylogeography, speciation and demographic history: Contrasting evidence from mitochondrial and nuclear markers of the *Odorrana graminea* sensu lato (Anura, Ranidae) in China. *Molecular Phylogenetics and Evolution*, 144: 106701.

https://doi.org/10.1016/j.ympev.2019.106701

- Fei, L. (2020). Atlas of Amphibians in China (Field Edition). Henan science and Technology Press, Zhengzhou, China. 837 pp.
- Fei, L., Ye, C. Y. and Huang, Y. Z. (1990). *Key to Chinese Amphibians*. Chongqing Branch, Science and Technology Literature Press, Chongqing, China. 364 pp.

- Fei, L., Ye, C. Y. and Jiang, J. P. (2012). Colored Atlas of Chinese Amphibians and Their Distributions. Sichuan Publishing House of Science and Technology, Chengdu, China. 620 pp.
- Frost, D. R. (2022). Amphibian species of the world: an online reference. Version 6.1, http://research.amnh.org/vz/herpetology/amphibia / (Accessed on 18 March 2022).
- Günther, A. C. L. G. (1876 "1875"). Third report on collections of Indian reptiles obtained by the British Museum. *Proceedings of the Zoological Society of London*, 1875: 567–577.
- Hallowell, E. (1861 "1860"). Report upon the Reptilia of the North Pacific Exploring Expedition, under command of Capt. John Rogers, U.S. N. *Proceedings of the Academy of Natural Sciences of Philadelphia*, 12: 480–510.
- Hedges, S. B. (1994). Molecular evidence for the origin of birds. Proceedings of the National Academy of Sciences of the United States of America, 91: 2621–2624. https://doi.org/10.1073/pnas.91.7.2621
- Li, P. P., Lu, Y. Y. and Rao, D. Q. (2008). A new species of cascade frog (Amphibia, Ranidae) from Tibet, China. *Zoological Systematics*, 33 (3): 537–541.
- Liu, S., Rao, D. Q., Zhang, D. R., Lwin, Y. H., Mo, M. Z., Zuo, C. S., Yin, F. W., Quan, R. C. and Li, S. (2022). Phylogenetic position of *Odorrana macrotympana* (Yang, 2008) (Anura, Ranidae) and extension of its geographical distribution. *Herpetozoa*, 35: 9–19. https://doi.org/10.3897/herpetozoa.35.e77147
- Liu, X. L., He, Y. H., Wang, Y. F., Beukema, W., Hou, S. B, Li, Y. C., Che, J. and Yuan, Z. Y. (2021). A new frog species of the genus *Odorrana* (Anura: Ranidae) from Yunnan, China. *Zootaxa*, 4908: 263–275. https://doi.org/10.11646/zootaxa.4908.2.7
- Luo, T., Wang, S. W., Xiao, N., Wang, Y. L. and Zhou, J. (2021). A new species of odorous frog genus *Odorrana* (Anura, Ranidae) from Southern Guizhou Province, China. *Asian Herpetological Research*, 12 (4): 381–398. https://doi.org/10.16373/j.cnki.ahr.200122
- Matsui, M. and Jaafar, I. (2006). A new cascade frog of the subgenus *Odorrana* from peninsular Malaysia. *Zoological Science*, 23 (7): 647–651. https://doi.org/10.2108/zsj.23.647
- Werner, F. (1930). *Rana leporipes*, a new species of frog from South China, with field notes by R. Mell. *Lingnan Science Journal*, 9: 45–47.
- Xiong, R. C., Li, C. and Jiang, J. P. (2015). Lineage divergence in *Odorrana graminea* complex (Anura: Ranidae: *Odorrana*). *Zootaxa*, 3963 (2): 201–229. https://doi.org/10.11646/zootaxa.3963.2.3
- Yang, D. T. and Rao, D. Q. (2008). Amphibia and Reptilia of Yunnan. Yunnan Science and Technology Press, Kunming, China. 411 pp.